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Abstract
In this work, we studied the role played by the particle-particle contact over the effective properties appearing in
upscaled thermal models, for heat transport at the fluid-porous medium interfacial region under conductive regime.
Using closure problems recently reported in the literature, the various effective properties were predicted as functions
of position in the inter-region and of the degree of interconnection between solid particles. To this end, the associated
closure problems were solved in unit cells containing squares connected by rectangular ramifications. It is shown
that the existence of contact between particles yields results significantly different from those without contact. This
may be an important source of error in modeling, specially when the solid (or the fluid) is highly conductive in
comparison with the other phase.

Keywords: upscaled thermal models, one-domain approach, effective properties, particle-particle contact.

Resumen
En este trabajo, se estudió el papel del contacto partı́cula-partı́cula sobre las propiedades efectivas que aparecen en

los modelos escalados, para el transporte de calor en la región interfacial entre un medio poroso y un fluido bajo
régimen conductivo. Utilizando problemas de cerradura reportados recientemente en la literatura, se predijeron las
propiedades efectivas en función de la posición en la inter-región y del grado de interconección entre las partı́culas
sólidas. Para esto, los problemas de cerradura se resolvieron en celdas unitarias que contienen cuadrados conectados
entre sı́ por medio de brazos rectangulares. Se encontró que la existencia de contacto entre las partı́culas produce
resultados significativamente diferentes a aquellos originados sin contacto. Esto puede representar una importante
fuente de error en el modelamiento, especialmente cuando el sólido (o el fluido) es mucho más conductivo en
comparación con la otra fase

Palabras clave: modelos térmicos escalados, modelo de un solo dominio, propiedades efectivas, contacto partı́cula-
partı́cula.

1 Introduction

Accurate characterization for heat transport taking
place between homogeneous media, as those

composed by a porous medium adjacent to a free fluid
region, plays a crucial role in modeling and designing
in several practical applications.
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Some examples are packed bed reactors (Pereira-
Duarte et al., 1984), modified heat exchangers (Alkam
et al., 2001; Chen and Sutton, 2005), drying processes
(Jimenez-Islas et al., 2004; Carrera-Rodrı́guez et al.,
2009), transport in biological tissues (Khaled and
Vafai, 2003) and transpiration cooling processes (Cho
and Eckert, 1994). In this type of systems, one
of the main challenges lies in accurately describing
transport phenomena at the vicinity of the fluid-porous
boundary. In this zone, the effective properties in the
bulk of homogeneous regions can not be used due
to the drastic changes of the microstructure of the
phases. To overcome this issue there are two different
alternatives (Goyeau et al., 2003):

• The first one is the One Domain Approach
(ODA) (Valdes-Parada et al., 2007; Aguilar-
Madera et al., 2011). Here the entire system,
i.e., porous medium and free fluid region,
is considered as a single domain and the
modeling is carried out with effective equations
valid everywhere. Such effective equations
are expressed in terms of position-dependent
parameters, which are constant in the bulk of
homogeneous media and undergo rapid and
continuous changes through the so-called inter-
region. To use this methodology it is required
to know the spatial dependency of the effective
properties.

• The second one is the Two Domain Approach
(TDA) (Ochoa-Tapia and Whitaker, 1998, 1997;
Valdes-Parada et al., 2009). Here each
homogeneous medium is considered as a single
domain and the modeling is carried out with
effective equations for each domain. In this
case, the effective equations are expressed
in terms of position-independent parameters
and the inter-region is replaced by a singular
dividing surface. To use this method it is
required to know the position of the dividing
surface, which is still a matter of investigation
(Jamet and Chandesris, 2009; Veran et al.,
2009), and the jump boundary conditions for
coupling effective equations at the dividing
surface.

In modeling heat transport between homogeneous
media, the majority of works in literature use the TDA
with conventional boundary conditions, i.e., continuity
of heat flux and temperature (Alkam et al., 2001; Chen
and Sutton, 2005). This type of boundary conditions
are not formally derived from the rigorous upscaling

of pore-scale governing equations, and they might be
inconsistent with the phenomenon at the microscale
(Prat, 1989). In this regarding, some efforts have been
devoted to theoretically (Ochoa-Tapia and Whitaker,
1997, 1998) and empirically (Sahraoui and Kaviany,
1993, 1994) obtain appropriate boundary conditions.
A summary of several boundary conditions reported
in the literature for momentum and heat transport can
be found in the work of Alazmi and Vafai (2001).

Recently, Valdes-Parada et al. (2009) pointed
out that in order to compute the jump coefficients
(unknown coefficients appearing in the associated
jump boundary conditions) it is necessary to account
for the spatial functionality of transport properties
involved in the effective equations under the ODA.
This means that both types of formulations above
described, are related mainly due to the phenomenon
taking place at the vicinity of the fluid-porous
boundary. This stresses the importance of developing
closed models under the ODA context, since these are
crucial previous steps toward the derivation of closed
and complete boundary conditions for the TDA.

One geometrical feature that crucially drives
heat transfer through multiphase media, besides the
physical properties, concerns the way in which phases
are distributed at the microscale. Heat is preferentially
transported through the more conductive phase and
the remaining (less conductive) phases act as thermal
insulators. Thus, one has that, depending of the
thermal conductivities of materials, the existence of
continuous and dispersed phases may contribute to
favor (or hinder) the heat propagation through the
entire multiphase system.

In this work, we predict the effective thermal
coefficients appearing in the closed ODA models
recently developed by Aguilar-Madera et al. (2011)
under local thermal equilibrium and non-equilibrium
assumptions. Particularly, we study the role played by
the particle-particle contact on the spatial functionality
of the effective thermal tensors and the interstitial
heat transfer coefficient within the inter-region. The
analysis is bounded to purely conductive cases, in
which the particle-particle contact is represented
through interconnection-arms. The use of this type
of geometrical models, generally, yields results in
excellent agreement with experimental data when the
solid matrix is highly conductive (Nozad et al., 1985;
Yang and Nakayama, 2010).
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Homogeneous fluid,
h-region

Homogeneous porous medium,
w-region

Averaging volume, V

Solid phase,
s-phase

Fluid phase,
b-phase

V

Fig. 1. Homogeneous phases and regions composing
the system under study, and averaging volume.

2 Upscaled models
For purely-conductive heat transport, the governing
equation at the continuum scale for the fluid (β-phase)
is given by,

(ρcP)β
∂Tβ
∂t

= ∇ ·
(
kβ∇Tβ

)
(1)

whereas for the solid (σ-phase) is

(ρcP)σ
∂Tσ
∂t

= ∇ · (kσ∇Tσ) (2)

where (ρcP)β and (ρcP)σ are the heat capacities per
volume at constant pressure for the fluid and the
solid, respectively; Tβ and Tσ are the fluid and
solid pore-scale temperatures, respectively; kβ is the
thermal conductivity for the fluid phase and kσ the
corresponding one for the solid. To complete the
microscale heat transport description, it is required to
specify the boundary conditions at the macroscopic
limits of the whole domain presented in Fig. 1,
the initial conditions and the interfacial conditions
applying at the fluid-solid interface (these are
continuity of heat flux and temperature). The difficulty
associated in solving the microscale heat transport
problem is outlined in the complex microstructure
sketched in Fig. 1. Note that one needs to know
the distributions of phases in detail. This gives
rise to the necessity of describing the transport from

the macroscale in terms of average temperatures and
effective coefficients, i.e., an upscaling process must
be done.

Recently, Aguilar-Madera et al. (2011) carried out
the upscaling process for the heat transport problem
by using the method of volume averaging (Whitaker,
1999). They derived the volume averaged model under
local thermal non-equilibrium conditions and within
the ODA framework, which in turn is composed by
the governing equations for the β- and σ-phases,

εβ(x) (ρcP)β
∂
〈
Tβ

〉β
∂t

= ∇ ·

[
Kββ(x) · ∇

〈
Tβ

〉β
+ Kβσ(x) · ∇ 〈Tσ〉σ

]
− avh(x)

(〈
Tβ

〉β
− 〈Tσ〉σ

)
(3a)

εσ(x) (ρcP)σ
∂ 〈Tσ〉σ

∂t
= ∇ ·

[
Kβσ(x) · ∇

〈
Tβ

〉β
+Kσσ(x) · ∇ 〈Tσ〉σ

]
− avh(x)

(
〈Tσ〉σ −

〈
Tβ

〉β)
(3b)

where εβ and εσ are the volume fraction of fluid
and solid respectively. The above equations contain
several effective transport coefficients, which arose
from the upscaling process. These are the thermal
tensors Ki j (i, j = β, σ) and the interstitial heat transfer
coefficient avh, which depend on the position x. In
this case, as we are dealing with the non-equilibrium
model we require two governing equations, one for
each phase present in the system. In the above
equations the fluid intrinsic average temperature is
defined as, 〈

Tβ
〉β

=
1

Vβ(x)

∫
Vβ(x)

TβdV (4)

with Vβ being the space occupied by the β-phase
within the averaging domain V showed in Fig. 1, and
Vβ represents the volume of Vβ. It is understood
that there is an analogous definition for the solid
intrinsic average temperature 〈Tσ〉σ. It is worth
stressing that the effective coefficients involved in the
above equations have constant values in the bulk of
the homogeneous regions (sketched in Fig. 1), and
undergo continuous and rapid changes through the
inter-region. Additionally, it is mentioned that Eqs.
(3) represent a more simplified model in comparison
with that one originally derived by Aguilar-Madera et
al. (2011) [see Eqs. (13) and (16) in there] as some
less-relevant effective parameters were discarded.

When the local thermal equilibrium assumption is
valid, a model with a single governing equation is
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enough for modeling heat transport and Eqs. (3) can
be appropriately added to obtain,

〈ρ〉CP(x)
∂ 〈T 〉
∂t

= ∇ ·
[
Ke f f (x) · ∇ 〈T 〉

]
(5)

where,

〈ρ〉CP = εβ (ρcP)β + εσ (ρcP)σ (6a)

Ke f f = Kββ + Kβσ + Kσβ + Kσσ (6b)

and the single average temperature is defined as,

〈T 〉 =
1
V

∫
V

TdV (7)

with T being the pore-scale temperature, which can be
Tβ or Tσ.

In order to use the upscaled models it is necessary
to predict the effective coefficients from experimental
or theoretical procedures. Using the method of volume
averaging, Aguilar-Madera et al. (2011) derived the
associated closure problems involving convective and
conductive heat transport; these closure problems are
solved in representative samples of the microscale
(unit cells). For the case at hand, the corresponding
closure problems are slightly different from those of
Aguilar-Madera et al. (2011) since only conductive
heat transport is considered. These problems are given
in the Appendix along with the definitions of the
effective coefficients.

3 On the solution of closure
problems

As stated above, the closure problems required to
predict the effective properties can be solved in
reduced domains capturing essential features from
microescale. Indeed, the best procedure involves
using real micrographs, i.e., Transmission Electron
Microscopy images (TEM) from the porous medium
under study. However, the usage of simplified
geometric models, as those represented by periodic
arrays of particles is, generally, enough to obtain
results in excellent agreement with experimental
values (Ryan et al., 1980; Nozad et al., 1985; Wood,
2007; Yang and Nakayama, 2010).

In this work, we model the microstructure of
the porous medium as a periodic array of touching
squared cylinders. Following the method of Nozad

et al. (1985), the degree of inter-connection between
particles is quantified through the ratio c/a showed in
Fig. 2. Thus, in the porous region the continuous
phase is the solid whereas the dispersed phase is the
fluid. In Fig. 2 we have also sketched a periodic model
that consists in a non-touching array of cylinders.
Such a periodic model was recently used by Aguilar-
Madera et al. (2011) in the study of steady convective-
conductive heat transport between a porous medium
and a fluid within a ODA framework, and their results
for conductive regime will be compared in this work.

The closure problems were solved using
the commercial finite element solver Comsol
Multiphysics 3.5a, which implements a direct linear
method for inversion of matrices (UMFPACK solver)
to solve the associated non-local steady boundary-
value problems [Eqs. (A-2) in the Appendix]. The
whole domain was discretized in numerous triangular
elements as those showed in Fig. 3 (finite elements),
where unit cells in the bulk of the porous medium
and in the inter-region are presented. As discussed by
Valdes-Parada et al. (2007), the size of unit cells (i.e.
the number of particles in the cell) in the inter-region
must be large enough so that results are independent
on this parameter. In this case, we found that a cell
including 10 solid particles satisfies this requirement.
As the large cell in Fig. 3 contains 5 particles (of 10
possibles), then the results computed from this cell
correspond to y = 0 if the cell centroid is assigned to
the center. In addition, it is worth noting that results
computed with this method are independent of the
number of triangular elements used.

Periodic
 array 1

Unit cell 1 Periodic
array 2

Porous medium

Unit cell 2

a c

lcell

Fig. 2. Periodic models of the porous medium.
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fluid phase fluid phase

fluid phase fluid phase

solid phase

Unit cell
in the

porous bulk

Unit cell
in the

inter-region

x

y

Fig. 3. Examples of finite-element mesh used for
solving closure problems in the bulk of the porous
medium and in the inter-region, taking εβ,ω = 0.5 and
c/a = 0.1.

Particularly, the number of triangular elements
rapidly grows when c/a → 0, causing that
computational demands significantly increase due to
the thin interconnection arms. For this reason, the
results of next section are bounded for c/a = 0.04
as minimum value for computations in the inter-
region, and 0.005 in the porous bulk. Despite of this
limitation, the tendency of results will clarify the role
played by the particle-particle contact in the effective
medium equations under the ODA framework.

4 Results and discussion

4.1 Predictions in the porous bulk

Firstly, we focus upon the behavior of the most
significant effective properties in the bulk of the porous
medium. Particularly, we analyze the influence of
the particle-particle contact over the effective thermal
tensors and the interstitial heat transfer coefficient.
The effect of varying parameters as the porosity and

the ratio of thermal conductivities, κ = kσ/kβ, can
be found elsewhere (Quintard and Whitaker, 1993,
1995; Quintard et al., 1997). As sketched in the
discretization mesh presented in Fig. 3, cells located at
the porous bulk allows us to perform computations for
lower values of the ratio c/a, in comparison with cells
in the inter-region. For this reason, in this section we
present results up to c/a = 0.005 as minimum value,
from which one can infer the corresponding tendency
within the inter-region.

In Fig. 4 the dependency of the longitudinal
components (xx-elements) of Kββ and Kσσ evaluated
in the bulk of the porous region, ω, with the ratio c/a
are presented. Notice that increasing the degree of
interconnection causes that

(
Kββ,ω

)
xx

decreases for κ <
1, whereas for κ > 1 this parameter is insensitive. The
opposite behavior for

(
Kσσ,ω

)
xx is true. This situation

is congruent with the physics at the microscale; if
the solid is more conductive than the fluid (κ > 1),
then increasing the degree of interconnection favors
the thermal tensor associated with the solid, i.e., Kσσ.

10−4 10−2 100 102 104

10−3

10−2

10−1

a)

κ

( K
β
β
,ω

) xx
/k

β

c/a = 0.005
0.01
0.05

0.1

10−4 10−2 100 102 104

0.3

0.4

0.5

b)

κ

( K
σ
σ
,ω

) xx
/k

σ

Fig. 4. Dependency of a) (Kββ,ω)xx and b) (Kσσ,ω)xx

with κ and the ratio c/a, taking εβ,ω = 0.5.
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In the case when the fluid is more conductive than the
solid (κ < 1), decreasing the grade of interconnection
favors Kββ since the resistance to heat transport offered
by the solid diminishes.

From our computations we found that all the off-
diagonal elements of thermal tensors are negligible
in comparison with their diagonal counterparts. For
example, we have that(

Kββ,ω

)
xx
�

(
Kββ,ω

)
xy
,
(
Kββ,ω

)
yx

(8)

In addition, since the unit cell used in calculations is
symmetric with respect to the x- and y-coordinates, it
is easy to demonstrate that the diagonal elements of
the thermal tensors are equal, for example(

Kββ,ω

)
xx

=
(
Kββ,ω

)
yy

(9)

It is pointed out that the isotropy expressed in later
equation is broken under “asymmetric conditions”
that might take place for cases with convective heat
transport and/or the microstructure is preferentially
oriented (for instance, a porous medium composed by
laminated solids).

The following thermal tensors that we study are
the crossed ones Kβσ and Kσβ. Particularly, from our
simulations, and according to Quintard and Whitaker
(1993), it was found that both tensors are equal in the
porous bulk, i.e.

Kβσ,ω = Kσβ,ω (10)

As showed in Fig. 5a), the longitudinal element of Kβσ

increases when c/a → 0, specifically for κ > 1. Note
that for κ � 1 this effective parameter vanishes, and
the degree of interconnection is not significant.

With the effective thermal tensors involved in the
non-equilibrium model being available, we can use
Eq. (6b) in order to predict the effective thermal
conductivity in the equilibrium model. In Fig. 5b) we
show the dependency of the longitudinal component of
Ke f f with κ and the grade of interconnection. Notice
that the ratio c/a plays an important role mainly for
κ < 1 and, eventually, the effective conductivity
vanishes when c/a → 1. In this limit, the solid matrix
acts as thermal insulator enclosing portions of fluid
hindering the capability of the porous medium for heat
transport. In the opposite case (κ > 1), the effective
conductivity slowly tends to the corresponding value
when c/a → 0. Moreover, for comparison purposes,
we also plot the analytical expression reported by
Batchelor and O’Brien (1977).

10−4 10−2 100 102 104

0

5 · 10−2

0.1

0.15

0.2

0.25

a)

κ

( K
β
σ
,ω

) xx
/k

β

c/a = 0.005
0.01
0.05

0.1

10−3 10−1 101 103

10−2

10−1

100

101

102

103

104

b)

κ

( K
ef

f,
ω

) xx
/k

β

c/a = 0.005
0.01
0.05
0.1

2D Chang’s cell
3D Chang’s cell

point-contact

Fig. 5. Dependency of a) (Kβσ,ω)xx and b) (Ke f f ,ω)xx

with κ and the ratio c/a and comparison with simple
unit cells taking εβ,ω = 0.5.

(Ke f f ,ω)xx

kβ
= 4 ln(κ) − 11 (11)

which is valid for large values of κ and when there
is point-contact between particles. Notice that the
tendency of our results agrees with the behavior of the
point-contact curve. In addition, in Fig. 5b) we present
the results when there is no interconnection between
particles, i.e., the β-phase is continuous. For a periodic
array of cylinders as those presented in Fig. 2, Ochoa-
Tapia et al. (1994) reported the analytical expression,
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Fig. 6. Dependency of avh with κ and the ratio c/a,
taking εβ,ω = 0.5.

(Ke f f ,ω)xx

kβ
=

2κ − εβ,ω(κ − 1)
2 + εβ,ω(κ − 1)

(12)

whereas for a periodic array of spheres the
corresponding equation is (Maxwell, 1873),

(Ke f f ,ω)xx

kβ
=

3κ − 2εβ,ω(κ − 1)
3 + εβ,ω(κ − 1)

(13)

As these equations result from the solution of
the corresponding closure problems in non-periodic
Chang’s cell (Chang, 1982), they are conveniently
labeled as 2D and 3D Chang’s cell in Fig. 5b).
Additionally to Eqs. (11)-(13), we refer the reader to
the Chapter 4 in the book of Vafai (2000) where several
analytical expressions of the effective conductivity for
different geometrical models are summarized.

In Fig. 5b) the importance of the particle-particle
contact is manifested through the three types of curves
showed: with contact, with point-contact and without
contact. It should be stressed that in cases when
κ � 1 or κ � 1, the differences between curves are
more noticeable, and under these circumstances, the
accurate characterization of the porous microstructure
becomes relevant.

To finalize this section, in Fig. 6 we show the
effect of the ratio c/a and κ over the interfacial heat
transfer coefficient avh normalized with kβ/l2cell, where
lcell is the unit cell width. For cases with κ � 1 this
coefficient vanishes and the influence of the particle-
particle contact is negligible. This is a topic consistent
with physics at the microscale; as κ → 0 the solid acts

as a thermal insulator and the heat exchanged between
phases (quantified with avh) eventually decreases.
When the solid is more conductive than the fluid, it
seems that increasing the ratio c/a reduces the heat
exchanged between phases. However, it should be
mentioned that avh represents the heat exchanged per
unit volume; as c/a decreases, the interfacial area av

also do it and consequently avh too.

4.2 Predictions in the inter-region

Now we focus over the spatial transitions of effective
coefficients through the inter-region. Particularly,
our interest is centered on the influence of the
degree of interconnection over effective parameters
evaluated at different positions. The influence of
others parameters such as κ and the porosity can be
found elsewhere (Aguilar-Madera, 2011). In the inter-
region, the redistribution of phases makes it necessary
to consider this zone as an heterogeneous zone which
encompasses variations in geometrical properties (as
εβ and av). This makes us use larger unit cells as the
one shown in Fig. 3, in such a way that changes in the
microstructure are taken into account (Valdes-Parada
et al., 2007, 2009; Aguilar-Madera et al., 2011).

The spatial evolutions of (Kββ)xx and (Kβσ)xx as
functions of c/a are presented in Fig. 7a) keeping
thermal conductivities and porosity fixed. The first
thermal coefficient hardly depends on the particle-
particle contact and all results computed collapse in
the same curve, for this reason we just present for
c/a = 0.04. As the results correspond to κ =

100, they are in agreement with those presented in
Fig. 4a), in which the ratio c/a practically does
not influence (Kββ)xx. Here the position y has been
normalized with the cell radius r0. In addition, we
also present the results recently reported by Aguilar-
Madera et al. (2011) where the porous medium
is represented as a periodic array of non-touching
solid cylinders (periodic array 1 showed in Fig. 2).
Regarding the effective coefficient (Kβσ)xx, the degree
of interconnection has a moderate influence mainly in
the vicinity of the porous bulk, i.e., when y/r0 → −1.
Nevertheless, geometries considering particle-particle
contact give rise different results with respect to non-
touching particles. Notice that using a periodic array
of cylinders, (Kβσ)xx is a linear function of position
being equal to (Kββ)xx in the porous bulk and 0 in the
fluid region.
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Fig. 7. Dependency of a) (Kββ)xx and (Kβσ)xx, and b)
(Ke f f )xx and (Kσσ)xx with position in the inter-region
and the geometry of microstructure. Here was taked
εβ,ω = 0.5 and κ = 100.

In Fig. 7b) the spatial dependence of (Kσσ)xx

involved in the non-equilibrium model, and (Ke f f )xx

the unique effective parameter in the equilibrium
model are presented. In this case, as κ = 100
both effective parameters have similar values through
the inter-region and within the porous medium. As
mentioned above, high values of κ favor the coefficient
associated to the solid, and consequently, the thermal
tensor Kσσ mainly contributes to the effective thermal
conductivity [remember that Ke f f involves all the

thermal tensors of the non-equilibrium model, see
Eq. (6b)]. The results presented are in agreement
with those shown in Figs. 4b) and 5b), in the sense
that particle-particle contact significantly influences
the effective parameters leading to evident differences
with respect to non-touching particles. In addition,
it should be noted that in cases with particle-particle
contact the spatial dependency is nonlinear as opposed
to those corresponding to non-touching particles.

Finally, in Fig. 8 we show the spatial evolution
of avh. In this case the tendency with and without
particle-particle contact are similar. Nevertheless,
as showed in Fig. 6, the interconnection between
particles causes larger values of avh (in comparison
with non-touching particles) in the porous bulk and
this trend continues through the inter-region. Notice
that results present maximum values in the porous bulk
and rapidly decrease to 0 in the fluid region. This
is consistent with the physics at the microscale since
eventually the solid volume fraction decreases, and
therefore, also the heat exchanged between phases.
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Fig. 8. Dependency of avh with position in the inter-
region and the geometry of microstructure. Here was
taken εβ,ω = 0.5 and κ = 100.

4.3 Comparison between predictions of the
average temperature

In order to exemplify the error that one can make
when the particle-particle contact is not taken into
account, in this section we present comparisons
between numerical steady-state solutions of the
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Table 1. Percentage of error for predictions of average
temperature as function of the ratio c/a and κ.

c/a κ = 0.001 κ = 0.01 κ = 100 κ = 1000

0.10 13.02 9.15 12.17 13.48
0.08 12.90 8.60 12.12 13.48
0.06 12.71 7.84 12.07 13.47
0.04 12.36 6.70 12.01 13.46

equilibrium model [Eq. (5)] using different types of
interconnection. Thus, we define a purely conductive
heat transport problem taking place in the one-
dimensional domain −yω ≤ y ≤ +yη. Here y is
the coordinate normal to the macroscopic boundary
dividing the porous domain from the fluid region; yη
and yω are the size of the fluid region and the porous
medium, respectively. We assume that the free fluid-
porous boundary is located at y = 0 and the limit
of the porous medium at y = −yω, hence, the fluid
region encompasses the positive side of the domain,
i.e., 0 ≤ y ≤ +yη. It is important to mention that
despite the fact we specify the location of the virtual
boundary separating the homogeneous regions, we
do not need to specify boundary conditions there, as
we are using the one-domain approach with position-
dependent effective conductivity.

Now, we define the Dirichlet-type conditions at the
boundaries of the domain,

at y = −yω, 〈T 〉 = Tω (14a)
at y = +yη, 〈T 〉 = Tη (14b)

In this way, introducing the non-dimensional
temperature

Θ =
〈T 〉 − Tω
Tη − Tω

(15)

the solution field is bounded by 0 ≤ Θ ≤ 1. In
addition, the dimensionless length

ŷ = y/r0 (16)

is used in the analysis and, therefore, the inter-region
is given by −1 ≤ ŷ ≤ +1

In Table 1 we present the percentage of error

% error =
100

yω + yη

y=+yη∫
y=−yω

|Θcont − Θdisp|dy (17)

for several values of the ratio c/a and κ keeping
fixed εβ,ω = 0.5 and yω = yη = 20r0. In Eq.
(17) the subscript cont refers to the field solution

when the solid is a continua phase (periodic array 1
in Fig. 2) and disp when the solid is a dispersed
phase (periodic array 2). As expected, the larger error
(around 13.0-13.5) is observed as long as the ratio of
connectivity increases and the thermal conductivities
between phases differ significantly, i.e., κ � 1 or� 1.
Notice that the largest error occurs when the solid is
more conductive than the fluid phase.

The numerical results given in Table 1
quantitatively illustrate the possible source of error
if the microstructure of a specific heat transport
problem is not taken into account for prediction of
the effective coefficients. Undoubtedly, in order to
gain precision in modeling some particular problem,
the previous knowledge of the spatial distribution of
phases is conveniently required, specially in cases
where physical properties of materials, as the thermal
conductivity, are clearly different.

Conclusions
In this work, we analyze the role played by the
particle-particle contact over the effective coefficients
appearing in upscaled thermal equations under
conductive conditions. Particularly, models with
and without local thermal equilibrium assumptions,
and in the context of the one-domain approach for
heat transport in the porous-fluid inter-region, were
considered. The contact between solid particles was
modeled through interconnection arms, and therefore,
the fluid phase was considered as dispersed. In cases
when the solid is more conductive than the fluid,
the particle-particle contact favors effective parameters
related to the solid-phase; whereas when the fluid
is more conductive, minimizing contact between
particles favors the effective parameters related to the
fluid-phase. In general, it was found that the existence
of contact between particles give rises larger values,
compared to the case when there is no contact, for the
effective thermal conductivity and the interstitial heat
transfer coefficient. This could be a serious source of
error in modeling, specially when the porous medium
is composed with a highly (or poorly) conductive solid
in comparison with the fluid. The results of this
work provide the background for further derivations
of closed jump boundary conditions in the two-domain
approach in systems with dispersed phases.

Nomenclature
a width of the squared solid particles, m
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av interfacial area per volume, 1/m
c thickness of interconnection arms, m
cP specific heat capacity at constant pressure,

J/(kg K)
CP heat capacity weighted with mass fraction,

J/(kg K)
h interfacial heat transfer coefficient per

volume, W/(m2 K)
km thermal conductivity of the m-phase (m =

β, σ), W/(m K)
Ke f f tensor of effective thermal conductivity for

the equilibrium model, W/(m K)
Kmp effective thermal tensor for the m-phase

equation and associated to the p-phase
temperature (m, p = β, σ), W/(m K)

(K)xy xy-element of tensor K, W/(m K)
r0 size of the averaging domain, m
t time, s
〈T 〉 single average temperature, K
Tm temperature of the m-phase at the

microscale (m = β, σ), K
〈Tm〉

m intrinsic average temperature of the m-
phase (m = β, σ), K

Tp average temperature at the external
boundary of the p-region (p = η, ω), K

V averaging domain
V volume of the averaging domain, m3

Vm portion of the averaging domain occupied
by the m-phase (m = β, σ)

Vm volume of m-phase within the averaging
domain (m = β, σ), m3

x position in which the effective parameter is
evaluated, m

y coordinate normal to the fluid-porous
medium boundary, m

ŷ non-dimensional y-coordinate
yp size of the p-region (p = η, ω), m

Greek symbols
β fluid phase
εm volume fraction of m-phase
η free fluid region
κ ratio of thermal conductivities
ρ density, kg/m3

〈ρ〉 volume averaged density, kg/m3

σ solid phase
Θ dimensionless temperature
ω porous medium region
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Appendix

In this section, the definitions of the effective transport
properties involved in Eqs. (3) and (5) and the
closure problems for predict them are presented. The
closure scheme involves a long theoretical procedure
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and was recently reported by Aguilar-Madera et al.
(2011) (see details in their Appendix). The effective
transport properties are given by the following
compact formulation,

Ki j(x) = ki

εi(x)δi jI +
(−1)δiσ

V

∫
Aβσ(x)

nβσbi jdA


(A-1a)

avh(x) =
ki

V

∫
Aβσ(x)

nβσ · ∇sidA (A-1b)

Here the subscripts i and j can be β or σ, δi j is the
Kronecker’s delta, I is the identity tensor, Aβσ is the
interface fluid-solid location and nβσ is the unit normal
vector pointing from the fluid to the solid. b and s are
the so-called closure variables solving the following
steady-state boundary-value problems:
Problem i, i = 1, 2, 3

0 = kβ∇2φβi − fβi, in the β-phase (A-2a)

0 = kσ∇2φσi − fσi, in the σ-phase (A-2b)

φβi = φσi + gI
i , at Aβσ (A-2c)

nβσ ·
(
kβ∇φβi

)
= nβσ · (kσ∇φσi) + gII

i , at Aβσ (A-2d)〈
φβi

〉β
= 〈φσi〉

σ = 0 (A-2e)

φβi(r) = φβi(r + l); φσi(r) = φσi(r + l) (A-2f)

where φmi (m = β, σ) represents scalar and vectorial
variables according to

φm1 = bmβ; φm2 = bmσ; φm3 = sm (A-3)

whereas fmi, gI
i and gII

i are defined as

fmi =
ε−1

m km(−1)δmσ

V

∫
Aβσ

nβσ · ∇φmidA (A-4a)

gI
i = δi3; gII

i = nβσ
(
−δ1ikβ + δ2ikσ

)
(A-4b)
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